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a b s t r a c t

This work is concerned with system identification of plants using quantized output observations.
We focus on relationships between identification space and time complexities. This problem is of
importance for system identification in which data-flow rates are limited due to computer networking,
communications, wireless channels, etc. Asymptotic efficiency of empirical measure based algorithms
yields a tight lower bound on identification accuracy. This bound is employed to derive a separation
principle of space and time complexities and to study sensor threshold selection. Insights gained from
these understandings provide a feasible approach for optimal utility of communication bandwidth
resources in enhancing identification accuracy.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies system identification of plants in which
only quantized output observations are available. It considers a
general class of quantization problems that partition the output
range into a finite collection of subsets to achieve identification
error reduction. This is of particular interest for systems with
a communication channel to transmit output measurements
such as sensor networks and networked control systems. In
such cases, coding of the output partition can be designed to
improve identification accuracy, communication complexity, or
other related performance measures.
This subject is important in understanding modeling capa-

bility for systems with limited sensor information, establishing
relationships between communication resource limitations and
identification complexity, and studying sensor networks. This pa-
per is focused on the issues of space and time complexities in
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their relations to system identification, although the framework
can be related to similar problems for state estimation or feedback
control. The significance of understanding space and time com-
plexities can be easily illustrated by the following example. For
computer information processing of a continuous-time system, its
outputmust be sampled (e.g., with a sampling rateN Hz) and quan-
tized (e.g., with a precisionword-length of B bits). Consequently, its
output observations carry the data-flow rate of NB bits per second
(bps). For instance, for a typical 16-bit precision and 2 kHz sam-
pling rate, a bandwidth 32 K bps of data transmission resource is
required, on observations of one output alone. This is a significant
resource demand, especially when computer or wireless commu-
nications of data are involved.
The problem is generic since any computerized information

processing for analog signals will inherently encounter the
problem of data precision and sampling rates. However, this
problem is not acute when data-flow bandwidths are not limited
such as wired systems with fast computers. New technology
developments in smart sensors, MEMS (micro-electromechanical
systems), sensor networks, computer communication systems,
wireless systems, mobile agents, distributed systems, remote
controlled systems have ushered in new paradigms in which data-
flow rates carry significant costs and limitations.
Conceptually, it is well understood that increasing preci-

sion levels is desirable for enhancing accuracy in information
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processing. Similarly, increase in data size can be potentially useful
for reducing identification errors. However, these will jointly de-
mandmore resources. A fundamental questionmust be answered:
Is such a resource demand necessary for achieving a required iden-
tification accuracy? To answer this question, a framework is re-
quired that can facilitate analysis of both time complexity (such
as the sampling rate) and space complexity (such as the number of
subsets for output partition). This paper aims at developing such a
framework.
A preliminary study along this direction was initiated in our

work Wang, Zhang, and Yin (2003), where a method was intro-
duced for identification of systems with binary-valued output ob-
servations, representing the lowest space complexity. The present
paper treats more challenging situations of general quantized ob-
servations, employing our recent results on asymptotic efficiency
of empirical measure based identification algorithms (Wang & Yin,
2007). It addresses the following key issues: (1)What are themain
benefits in increasing the space complexity defined by the number
of output observation subsets, in terms of identification accuracy?
(2) What is the relationship between the space complexity (mea-
surement precision) and time complexity (speed of uncertainty
reduction)? (3) How should the output range be partitioned for
the best identification accuracy? (4) What is the optimal resource
allocation when communication channels provide only limited
bandwidths?
Traditional system identification using linear sensors is a

relativelymature research area that bears a vast body of literature;
see, e.g., the monographs on the subject in a stochastic or worst-
case framework (Kushner & Yin, 2003; Ljung, 1987; Milanese
& Vicino, 1991). Time complexity in identification was studied
in Dahleh, Theodosopoulos, and Tsitsiklis (1993), Poolla and
Tikku (1994) and Zames, Lin, and Wang (1994), mostly under
deterministic settings. On the other hand, space complexity
is a relatively new paradigm in system identification, other
than the traditional quantization in which quantization errors
are ubiquitously used in analysis. Signal quantization and data
compression are a typical A-D conversion process that has been
studied extensively in the signal processing and computer science
community. Studies of impact of quantization errors can be
conducted in a worst-case or probabilistic framework, depending
on how quantization errors are modeled. We refer the interested
reader to Abut (1990), Gersho and Gray (1992), and Sayood (2000)
for a comprehensive coverage of this topic. However, rigorous
analysis of space complexity in quantized identification problems
ought to take into consideration of general and optimal partition
of output ranges. This has not been formulated in the field of
identification to the best of our knowledge. Many significant
results have been obtained for identification and adaptive control
involving random disturbances in the past decades (Chen & Guo,
1991; Hakvoort & Van den Hof, 1995; Kumar, 1990; Kushner & Yin,
2003; Ljung, 1987). The utility of quantized observations carries
a flavor that is related to many branches of signal processing
problems such as binary reinforcement (Gersho, 1984) and sign-
error, sign-regressor, and sign–sign algorithms (Chen & Yin, 2003;
Elvitch, Sethares, Rey, & Johnson, 1989; Eweda, 1995). Note that
to construct the recursive algorithms, a partial stepsize restarting
may be used for certain global optimization problems; see Yin
(2000).
The rest of the paper is arranged as follows. Section 2 be-

gins with the problem formulation for system identification us-
ing quantized output observations. Early results on identifica-
tion errors and efficiency of optimal quasi-convex combina-
tion estimates (optimal QCCEs) are summarized in Section 3.
Section 4 presents asymptotic properties of space and time com-
plexities. These asymptotic properties are independent of specific
noise distributions, and hence are fundamental characteristics of

quantized identification. Sensor threshold selection and input de-
sign are investigated in Section 5. Robust, optimal, and adaptive
threshold selections for binary sensors are resolved, for which one
may conceptually draw analogy to robust stabilization, optimal
performance, and adaptation in control problems. Section 6 is de-
voted to the study of fundamental tradeoff between space and time
complexities in identification problems with constrained commu-
nication resources. Optimal resource allocation problems are in-
troduced and solved. Finally, Section 7 concludes the paper with
some further remarks.

2. Problem formulation

Consider the system1

y(k) = φT(k)θ + d(k), k = 1, 2, . . . , (1)

where φ(k) = [u(k), u(k− 1), . . . , u(k− n+ 1)]T is the vector of
the input, θ = [a0, . . . , an−1]T is a vector of unknown parameters
and d(k) is the disturbance.
The output y(k) is measured by a sensor ofm thresholds−∞ <

C1 < · · · < Cm < ∞. The sensor can be represented by a set of m
indicator functions

s(k) = [s1(k), . . . , sm(k)]T, (2)

where si(k) = I{−∞<y(k)≤Ci}, i = 1, . . . ,m and

I{y(k)∈A} =
{
1, if y(k) ∈ A,
0, otherwise.

This representation will be used to derive estimation algorithms.

Assumption A1. Suppose that {d(k)} is a sequence of independent
and identically distributed (i.i.d.) random variables. The accumula-
tive distribution function F(·) of d(1) is a twice continuously differ-
entiable function. The moment generating function of d(1) exists.

Assumption A2. The prior information on the unknown parame-
ter θ is that θ ∈ Ω , where Ω ⊂ Rn (n dimensional space of real
values) is a known compact set.

To facilitate analysis, it is convenient to divide the ranges
of the sensor into nonoverlapping intervals. An alternative
representation of the sensor is by defining s̃i(k) = I{Ci−1<y(k)≤Ci},
i = 1, . . . ,m + 1 and s̃(k) =

∑m+1
i=1 ĩsi(k). Hence, s̃(k) = i, for

i = 1, . . . ,m + 1, implies that y(k) ∈ (Ci−1, Ci] with C0 = −∞
and Cm+1 = ∞ (with the interval (Cm,∞)).
By using the vector notation, for l = 1, 2, . . .,

Y (l) = [y((l− 1)n+ 1), . . . , y(ln)]T ∈ Rn,
Φ(l) = [φ((l− 1)n+ 1), . . . , φ(ln)]T ∈ Rn×n,
D(l) = [d((l− 1)n+ 1), . . . , d(ln)]T ∈ Rn,

the observations can be rewritten in a block form as

Y (l) = Φ(l)θ + D(l). (3)

Note that {Φ(l)} is a sequence of n× n Toeplitz matrices obtained
from the input u.
When the input is designed to be n-periodic and full rank, that

is

u = {u1, u2, . . . , un, u1, u2, . . . , un, . . .}

1 Extension of the results from FIR systems to rational systems can be achieved
by using the methods in Wang, Yin, and Zhang (2006).
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and

Φ(l) = Φ =


un un−1 · · · u1
u1 un u2

. . .

un−1 un−2 · · · un


is full rank, we have Y (l) = Φθ + D(l). Let

ζ = [ζ1, . . . , ζn]
T
= Φθ

and

Si(l) = I{Y (l)≤Ci1n} = I{D(l)≤Ci1n−ζ },

where 1n is the n dimensional vector whose elements are all equal
to 1. For i = 1, . . . ,m + 1 and j = 1, . . . , n, denote Si,j(l) =
I{d((l−1)n+j)≤Ci−ζj}. Then

Si(l) = [Si,1(l), . . . , Si,n(l)]T.

3. Identification algorithms and optimality

We briefly summarize certain key results that form the basis
for complexity analysis, threshold selection, and input design. The
details of this section can be found in Wang and Yin (2007).
For the system in (1), the probability of {Si,j(l) = 1} is

pi,j = P{d((l− 1)n+ j) ≤ Ci − ζj} = F(Ci − ζj), (4)

which is independent of l or n since d is i.i.d. Take N measurements
on Si,j(l). Then, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},

ϕi,j(N) =
1
N

N∑
l=1

Si,j(l) (5)

is the sample relative frequency of d(k) taking values in (−∞, Ci−
ζj]. Thus, by the strong law of large numbers,

ϕi,j(N)→ pi,j = F(Ci − ζj), w.p.1. (6)

Note that F is a monotone function by Assumption A1, andΩ is
bounded by Assumption A2. Then, there exists a small z > 0 such
that

z < pi,j = F(Ci − ζj) < 1− z.

Since F(·) is not invertible at 0 and 1, we modify ϕi,j to avoid
singularities. Let

ξi,j(N) =

{
ϕi,j(N), if z ≤ ϕi,j(N) ≤ 1− z;
z, if ϕi,j(N) < z;
1− z, if ϕi,j(N) > 1− z.

(7)

Since ϕi,j(N) → pi,j, w.p.1 and z < pi,j < 1 − z, we have
ξi,j(N)→ pi,j, w.p.1. Denote

ξi(N) = [ξi,1(N), . . . , ξi,n(N)]T. (8)

By Assumption A1, F has a continuous inverse. Hence, for each
i = 1, . . . , n,

ζi(N) = [ζi,1(N), . . . , ζi,n(N)]T

:= Ci1n − F−1(ξi(N))

→ Ci1n − F−1(pi) = ζ w.p.1, (9)

where pi = [pi,1, . . . , pi,n]T.
Let ζi,j(N) (i = 1, . . . ,m) be m estimators of ζj based on sam-

ples of sizeN . Denote the estimation errors by ei,j(N) = ζi,j(N)−ζj,
ζ∗,j = [ζ1,j, . . . , ζm,j]

T and e∗,j(N) = [e1,j(N), . . . , em,j(N)]T. Then,

e∗,j(N) = ζ∗,j(N) − ζj1m, and for γj = [γj,1, . . . , γj,m]T, j = 1, . . .,
n, satisfying γj,1 + · · · + γj,m = 1,

ζ̂j(N) =
m∑
i=1

γj,iζi,j(N) = γ Tj ζ∗,j(N) (10)

is called a Quasi-Convex Combination Estimator QCCE. Let

ζ̂ = [̂ζ1, . . . , ζ̂n]
T.

Then, an estimator of θ can be constructed as

θ̂ (N) = Φ−1ζ̂ (N). (11)

ζ̂j(N) is an asymptotically unbiased estimator of ζj (Wang & Yin,
2007; Zhao, Zhang, Wang, & Yin, submitted for publication). The
variance of the estimation error ζ̂j(N)− ζj is given by

σ 2j (N) = γ
T
j Vj(N)γj,

where

Vj(N) = Ee∗,j(N)eT∗,j(N). (12)

The estimator that minimizes σ 2(N) is called the optimal quasi-
convex combination estimator (optimal QCCE), which is obtained
from

σ 2j (N) = min
γj,γ

T
j 1=1

σ 2j (N) = min
γj,γ

T
j 1=1

γ Tj Vj(N)γj. (13)

Theorem 1 (Wang & Yin, 2007). Suppose that Assumption A1 holds
and Vj(N) is positive definite. Then the optimal QCCE can be obtained
by choosing

γ ∗j =
V−1j (N)1

1TV−1j (N)1
, ζ̂j(N) = (γ ∗j )

Tζ∗,j(N), (14)

and the minimal variance is

σ 2j (N) =
1

1TV−1j (N)1
. (15)

Theorem 2 (Wang & Yin, 2007;Zhao et al., submitted for publica-
tion). Under Assumption A1,

Rj(N) := NVj(N)→ ΛjWjΛj := Rj, N →∞, (16)

whereΛj = diag{ 1
f (C1−ζj)

, . . . , 1
f (Cm−ζj)

} and

Wj =

p1,j(1− p1,j) · · · p1,j(1− pl,j)...
. . .

...
p1,j(1− pl,j) · · · pl,j(1− pl,j)

 . (17)

To implement the optimal QCCE algorithm, one may replace
Ci, ζj, and pi,j in Theorem 2 by their estimates, to obtain Rj(N) =
Λj(N)Wj(N)Λj(N) and

γ ∗j =
R−1j (N)1

1TR−1j (N)1
.

Recall that Si,j(l) = I{d(k)≤Ci}. Denote S̃i,j(l) =

I{Ci−1−ζj<d((l−1)n+j)≤Ci−ζj}, i = 1, . . . ,m + 1, j = 1, . . . , n, with
C0 = −∞ and Cm+1 = ∞. Let

p̃i,j = P{Ci−1 − ζj < d(1) ≤ Ci − ζj}

= F(Ci − ζj)− F(Ci−1 − ζj) := F̃i,j.

Define

h̃i,j = ∂ F̃i,j/∂ζj = −f (Ci − ζj)+ f (Ci−1 − ζj).
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Lemma 1 (Wang & Yin, 2007). The Cramér–Rao lower bound for
estimating ζj based on observations of {s(k)} is

σ 2j,CR(N,m, θ) =

(
N
m+1∑
i=1

h̃2i,j
p̃i,j

)−1
. (18)

With θ = Φ−1ζ , we obtain the following bounds.

Theorem 3. The Cramér–Rao lower bound for estimating θ based on
observations of {s(k)} is

ΣCR(N,m, θ) = Φ−1ΣCR(N,m, ζ )(ΦT)−1, (19)

where

ΣCR(N,m, ζ ) = diag−1
{
N
m+1∑
i=1

h̃2i,1
p̃i,1

, . . . ,N
m+1∑
i=1

h̃2i,n
p̃i,n

}
. (20)

The following theorem reveals that the optimal QCCE is
asymptotically efficient.

Theorem 4. The optimal QCCE is asymptotically efficient in the sense
that

NΣ(N,m, θ)− NΣCR(N,m, θ)→ 0 as N →∞.

In what follows,Σ2CR(N,m, θ)will be used to guide complexity
analysis and threshold selection.

4. Space and time complexities

The number m of thresholds is a measure of space complexity,
whereas the observation length N is a measure of time complexity
that quantifies how fast uncertainty can be reduced. In an
information processing problem that involves computer networks,
or communication data transmission, the required resource is
usually represented by bandwidths in bits per second. In our
identification problems, if identification must be accomplished
in T seconds to facilitate subsequent tasks (control, prediction,
diagnosis, etc.), then the time complexity N is translated to N
samples per T seconds. Correspondingly, the required bandwidth
will be R = N log(m + 1) (the simplified notation log = log2
is used) bits per T seconds, or R/T bps. Since T is an external
constant, we shall simply view R as the required bandwidth
on communication channels. For an available total resource R,
one may choose to assign more resource to space complexity
(increasingm) or to time complexity (increasing N , i.e., the rate of
data acquisition). The overall goal is to achieve the best uncertainty
reduction for a given resource, or to achieve minimum resource
utilization for a given level of uncertainty reduction. This section
presents basic properties of time and space complexities.

4.1. Separation of time and space complexities

To understand the impact of sensor threshold values and the
number of thresholds on identification error variance, consider
ΣCR(N,m, θ) in (19). We will interpret exchangeably m as space
complexity, the number of cascaded binary-valued sensors, or
the number of sensor thresholds. Let us first fix an integer
m. ΣCR(N,m, θ) indicates a basic relationship that delineates a
fundamental property of asymptotic separation of space and time
complexity in variance reduction.

Corollary 1.

Σ0(m, θ) := NΣCR(N,m, θ) (21)

is independent of N.

Define

%(m, θ) = sup
‖x‖=1
‖Σ0(m, θ)x‖ , (22)

namely, the largest singular value ofΣ0(m, θ).

Remark 1. Corollary 1 shows that asymptotically the optimal
variance σ 2CR(N,m, θ) is reduced in the rate of 1/N in terms of its
time complexity. Its reduction by increasing space complexity m
is characterized entirely by %(m, θ), which is independent of N .
This separation of space and time complexity in their capability
for identification error reduction provides a convenient foundation
for complexity analysis. Consequently, %(m, θ) will be used for
analysis of space complexity.

4.2. Monotonicity of space complexity

Let [ymin, ymax] be the range of yk, which may be unbounded.
A placement of m sensor thresholds is a partition ymin < C1 <
· · · < Cm < ymax of the interval [ymin, ymax]. In what follows, we
also use the notation Sm = {ymin, C1, . . . , Cm, ymax} to denote the
set of points of the partition.

Definition 1. Suppose m1 < m2 are two positive inte-
gers, and Sm1 = {ymin, C1, . . . , Cm1 , ymax} and Sm2 =

{ymin, C∗1 , . . . , C
∗
m2 , ymax} are two placements of sensors. We say

that Sm2 is a refinement of Sm1 , if {ymin, C1, . . . , Cm1 , ymax} is a sub-
set of {ymin, C∗1 , . . . , C

∗
m2 , ymax}.

Remark 2. In the definition of placement of sensor thresholds,
[ymin, ymax] can be either finite or infinite. In case one of these
values is ∞ or −∞, it is understood that we work with the
extended real number system. For practical utility, we have
assumed that no threshold is placed at either ymin or ymax,
otherwise they do not provide any useful information for system
identification.
Note that the statement ‘‘Sm2 is a refinement of Sm1 ’’ means

that Sm2 can be obtained by starting with the threshold points
C1 < · · · < Cm1 and interposing m2 − m1 points between them
to form a finer subdivision.

Theorem 5. Suppose that Sm1 and Sm2 are two placements of sensor
thresholds such that Sm2 is a refinement of Sm1 . Then %(m, θ) given
in (22) satisfies

%(m2, θ) ≤ %(m1, θ).

Remark 3. Theorem 5 is a result about monotonicity of space
complexity. It indicates that a reduction of error variance is
achieved by increasing space complexity.

Proof. The extra thresholds in Sm2 that are not in Sm1 can be added
one at a time. Hence, we only need to show that if one additional
threshold C is added to Sm1 , we have %(m1 + 1, θ) ≤ %(m1, θ).
Since the following analysis is valid for each element ofΣCR(m, θ),
we shall concentrate on a generic element σ 2CR for analysis.
Suppose that one additional threshold C is inserted in Sm1 ,

between C1, C2 ∈ Sm1 , C1 < C < C2. Denote p = P{C1 < x ≤ C2},
p1 = P{C1 < x ≤ C}, p2 = P{C < x ≤ C2} and h =

∂p
∂x , h1 =

∂p1
∂x ,

h2 =
∂p2
∂x . Note that p = p1 + p2 and h = h1 + h2, we have

h21
p1
+
(h− h1)2

p− p1
−
h2

p
=
(h1p− hp1)2

p1(p− p1)p
≥ 0,
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which implies

h21
p1
+
h22
p2
≥
h2

p
.

By (20), we obtain

σ 2CR(N,m1 + 1, ζ ) ≤ σ
2
CR(N,m1, ζ ),

and hence, by (19),

σ 2CR(N,m1 + 1, θ) ≤ σ
2
CR(N,m1, θ).

Thus, %(m1 + 1, θ) ≤ %(m1, θ) owing to (21) and (22). �

For simplicity, let u = {u0, 0, . . . , 0, u0, 0, . . . , 0, u0, 0, . . .}.
Without loss of generality, assume u0 > 0. In this case,

Φ = diag{u0, . . . , u0} and ζ = u0θ.

By (19) and (22), we have

ΣCR(N,m, θ) = u−20 diag
−1

{
N
m+1∑
i=1

h̃2i,1
p̃i,1

, . . . ,N
m+1∑
i=1

h̃2i,n
p̃i,n

}
.

Similar to (22), define

η(m, θ) = max
j

u−20
(
m+1∑
i=1

h̃2i,j
p̃i,j

)−1 . (23)

We will show that η(m, θ) is useful for threshold selection, input
design, and characterization of time and space complexities.

5. Threshold selection for binary-valued sensors

We now consider the problem of threshold selection. An
interval Ii = (Ci−1, Ci] of the output range can provide useful
information for system identification only when h̃i,j 6= 0,∀j.
Contribution of a sensor interval to error reduction depends on the
actual parameter θ , the distribution function F , the thresholds, and
the input, as illustrated by the following two examples.

Example 1. Suppose that F(·) is a uniform distribution on [0, 10],
namely F(x) = x/10, 0 ≤ x ≤ 10. The prior information on θ
is that θ ∈ [2, 5]. If one selects u(k) ≡ u0 = 1, and places four
sensor thresholds at C1 = 1, C2 = 6, C3 = 10, and C4 = 20, then
it can be verified that F(C1 − θ) = 0, F(C2 − θ) = (6 − θ)/10,
F(C3 − θ) = (10− θ)/10, F(C4 − θ) = 1. These imply

p̃1 = 0, p̃2 = (6− θ)/10, p̃3 = 0.4, p̃4 = θ/10.

Since p̃1 and p̃3 do not depend on θ , the intervals (−∞, C1] and
(C2, C3] do not provide information about θ .

Even when the threshold does provide information, selection
of the threshold value will have significant impact on the
convergence speed.

Example 2. Suppose that F(·) is a Gaussian distribution with zero
mean and variance σ 2 = 625. The true parameter is θ = 100 and
u ≡ 1. In this case, Corollary 1 becomes, adding C in notation and
using ηC (m, θ) in place ofΣ0(m, θ),

ηC (1, 100) = Nσ 2CR(1,N, θ) =

(
h̃21
p̃1
+
h̃22
p̃2

)−1
=
F(C − θ)(1− F(C − θ))

f 2(C − θ)
.

Since F(·) is Gaussian, its support is (−∞,∞), so for C =
20, 50, 80, 100, each threshold provides certain information. For
each C , we obtain the values

η20(1, 100) = 75 506; η50(1, 100) = 4767;
η80(1, 100) = 1244; η100(1, 100) = 982.

These indicate that the convergence speed ηC is significantly
impacted by the values of the threshold.

5.1. Feasibility analysis

In an identification problem, the parameter θ = [a1, . . . , an]T
is unknown. Hence, one must work with the prior uncertainty
set on θ . While in most applications, aj ∈ [a, a] (j = 1, . . . , n)
are the typical prior information, we shall use the general prior
uncertainty set θ ∈ Ω to include other possibilities. We first
concentrate on a binary-valued sensor of threshold C . Similar
conclusions will later be derived for general quantized sensors.
It is assumed that C and u0 can be either selected prior to an
identification experiment, or tuned during it. Let p̃j = F(C − aju0)
and h̃j = ∂ p̃j/∂aj = −f (C − aju0)u0.

Definition 2. An interval I = (−∞, C] or a threshold C is said
to be (1) feasible for θ = [a1, . . . , an]T if the corresponding h̃j 6= 0,
j = 1, . . . , n; (2) robustly feasible forΩ , if it is feasible for all θ ∈ Ω .

For a givenΩ , the set of all feasible thresholds will be denoted
by ΓΩ . We will derive concretely ΓΩ for some typical cases.
For a given θ = [a1, . . . , an]T, denote θmax = maxj=1,...,n aj and

θmin = minj=1,...,n aj. For a setΩ0, let

a = sup
θ∈Ω0

θmax and a = inf
θ∈Ω0

θmin

Theorem 6. Suppose that the prior information on the unknown
parameters is θ ∈ Ω0, and the disturbance d(k) is zero mean and
its density function has support (i.e., strictly positive) in (−δ, δ). For
a given u0 > 0, the set of robustly feasible thresholds for Ω0 is

ΓΩ0 = {C : au0 − δ < C < au0 + δ}. (24)

Furthermore, ΓΩ0 is non-empty if and only if

δ >
(a− a)u0
2

. (25)

Proof. For ∀C ∈ ΓΩ0 , we have C > au0 − δ ≥ aju0 − δ and
C < au0 − δ ≤ aju0 − δ, namely, aju0 − δ < C < aju0 + δ
for all θ ∈ Ω0 and j = 1, . . . , n, that is, −δ < C − aju0 < δ.
Hence h̃j = ∂ p̃j/∂aj = −f (C − aju0)u0 6= 0. By definition, C is
robustly feasible forΩ0. On the other hand, if C 6∈ ΓΩ0 , then there
exists some θ ∈ Ω0 which has at least one parameter aj such that
C 6∈ (aju0 − δ, aju0 + δ), which implies C is not feasible for θ .
Therefore, C is not robustly feasible for Ω0. Thus, the first part of
the theorem is proved.
Note that ΓΩ0 is non-empty if and only if au0 − δ < au0 + δ,

which is equivalent to (25). So the second part is true. �

Remark 4. Note that (25) can be rewritten as

u0 <
2δ
a− a

, (26)

which defines the maximum input value.
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5.2. Worst-case optimal design

For a given prior uncertainty setΩ of the unknown parameter
θ , the set ΓΩ of robustly feasible thresholds can be used to select
the thresholds to reduce identification errors. Corollary 1 provides
the main vehicle for this pursuit.
Observe that

p̃1,j = F(C − aju0), p̃2,j = 1− F(C − aju0),

h̃1,j = −f (C − aju0), h̃2,j = f (C − aju0).

By adding the dependence on C and u0 in notation, (22) is reduced
to

ηC,u0(1, θ) = maxj

u−20
(
h̃21,j
p̃1
+
h̃22,j
p̃2,j

)−1
= max

j

F(C − aju0)(1− F(C − aju0))
f 2(C − aju0)u20

.

If θ ∈ Ω and C ∈ ΓΩ , then f (C − aju0) 6= 0 for j = 1, . . . , n.
Therefore, ηC,u0(1, θ) is well defined. Denote

G(x) = F(x)(1− F(x))/f 2(x).

Then,

ηC,u0(1, θ) = maxj
G(C − aju0)/u20. (27)

In order to minimize ηC,u0(1, θ), we may choose optimal C first
for a given u0, followed by an optimization on u0; or choose optimal
u0 for a given C and then optimize C . For the first case, by (27) the
optimization on C is tominimizemaxj G(C−aju0). In contrast, for a
given C , u0 affects not onlyG(x) but also the denominator u20, which
makes the problem more difficult. For this reason, we opt for the
min–max problem

η∗ = inf
u0>0

inf
C∈ΓΩ

sup
θ∈Ω

ηC,u0(1, θ).

We solve this problem more concretely under certain typical
situations.

Bounded disturbances. Suppose that the prior information on the
unknown parameter is θ ∈ Ω0 = {θ = [a1, . . . , an]T : aj ∈
[a, a], j = 1, . . . , n}, and the disturbance d(k) is zero mean and
its density function has support on (−δ, δ). By Theorem 6, the set
of robustly feasible thresholds forΩ0 is ΓΩ0 = {C : au0− δ < C <
au0 + δ}. The optimal threshold and input selection is obtained by
solving the following min–max optimization problem

η∗ = inf
u0>0

inf
C∈ΓΩ0

sup
θ∈Ω0

max
j
G(C − aju0)/u20. (28)

Theorem 7. Suppose that d(k) is uniformly distributed with density
function f (x) = 1/(2δ) for x ∈ (−δ, δ).

(i) If (a− a)u0/2 < δ ≤ (a− a)u0, then

η∗ =
(a− a)2

4
(29)

and any C ∈ (au0−δ, au0+δ) is optimal in the worst-case sense
over θ ∈ Ω0.

(ii) If δ > (a− a)u0, then

η∗ = (a− a)2. (30)

Proof. For a given u0 > 0, and for each C ∈ ΓΩ0 and θ ∈ Ω0, we
have

C − aju0 < au0 + δ − au0 = δ,

and

C − aju0 > au0 − δ − a = −δ.

It follows that in (28), f (C − aju0) = 1/(2δ) and F(C − aju0) =
(C − aju0 + δ)/(2δ). As a result,

G(C − aju0)/u20 = (2δ)
2 C − aju0 + δ

2δu20

(
1−

C − aju0 + δ
2δ

)
=
δ2 − (C − aju0)2

u20
.

(i) In the case of (a− a)u0/2 < δ ≤ (a− a)u0, we have

au0 ≤ au0 − δ; au0 + δ ≤ au0.

This implies that for any C ∈ (au0−δ, au0+δ), there exists θ ∈ Ω0
such that aju0 = C . Consequently, for any given C ∈ ΓΩ0 ,

max
j

δ2 − (C − aju0)2

u20
=
δ2

u20
.

This and (26) yield that

η∗ = inf
u0>0

inf
C∈ΓΩ

max
j
G(C − aju0)/u20

= inf
u0<2δ/(a−a)

δ2

u20
=
(a− a)2

4
.

Thus, (29) is proved.
(ii) In case of δ > (a − a)u0, we have u0 < δ/(a − a) and

[au0, au0] ⊂ (au0 − δ, au0 + δ). For C ∈ (au0 − δ, au0 + δ) but
C 6∈ [au0, au0], we have that if C > au0

max
θ∈Ω0

max
j

δ2 − (C − aju0)2

u20

=

δ2 − min
θ∈Ω0

(C − aju0)2

u20
=
δ2 − (C − au0)2

u20
,

or if C < au0,

max
θ∈Ω0

max
j

δ2 − (C − θu0)2

u20
=
δ2 − (au0 − C)2

u20
.

In the first case, the variance is minimized when C is closest to
au0 + δ, and

η∗ = inf
u0<δ/(a−a)

δ2 − (au0 + δ − au0)2

u20

= inf
u0<δ/(a−a)

2δ(a− a)u0 − (a− a)2u20
u20

= inf
u0<δ/(a−a)

2δ(a− a)
u0

− (a− a)2

= (a− a)2.

In the second case, the variance is minimized when C is closest to
au0 − δ and similarly, we have η∗ = (a− a)2. Thus, (30) is proved.

�

Unbounded disturbances.When the disturbance is unbounded such
that f (x) > 0 for all x, for any given u0, all C ∈ R are robustly
feasible forΩ . The optimal threshold selection becomes

η∗ = inf
u0>0

inf
C
max
θ∈Ω

max
j
G(C − aju0)

/
u20. (31)
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The solutions to (31) can be obtained by first calculating

η̃(C, u0) = max
θ∈Ω

max
j
G(C − aju0)

/
u20, C ∈ R, u0 > 0,

and then,
η∗ = inf

u0>0
inf
C
η̃(C, u0).

Suppose d(k) is Gaussian distributed with mean 0 and variance
σ 2. Denote the correspondingdensity anddistribution functions by
fσ (x) and Fσ (x), respectively. Let Gσ (x) = Fσ (x)(1 − Fσ (x))/f 2σ (x)
and Hσ (x) = Gσ (x)/x2.

Theorem 8. Gσ (x) and Hσ (x) have the following properties.
(i) G′σ (x) = dGσ (x)/dx > 0 for x > 0 and G

′
σ (x) < 0 for x < 0.

(ii) There exists a unique x∗σ ∈ (0,∞) such that Hσ (x∗σ ) =
minx>0Hσ (x), where x∗σ = σ x

∗

1 and x
∗

1 is the unique solution of

h(x) =
(
x−

1
x

)
·
2F1(x)
2F1(x)− 1

−
f1(x)

1− F1(x)
= 0. (32)

Proof. (i) By Gaussian distribution, Gσ (−x) = Gσ (x), and hence
we need only to prove the case x > 0. Since Fσ (x) = F1(x/σ)
and fσ (x) = σ f1(x/σ), we have Gσ (x) = σ 2G1(x/σ) and G′σ (x) =
σG′1(x/σ). As a result, G

′
σ (x) > 0 for all x > 0 if and only if

G′1(x) > 0 for all x > 0. Without loss of generality, let σ = 1.
Denote

g1(x) = f1(x)− x(1− F1(x)),
g2(x) = xf1(x)− (1+ x2)(1− F1(x)),
g3(x) = (1− F1(x))2 + xf1(x)(1− F1(x))− f 21 (x),
g4(x) = 2(f1(x)+ xF1(x))− f1(x)/(1− F1(x)).

Since limx→∞ g1(x) = 0 and

g ′1(x) = −xf1(x)− (1− F1(x))+ xf1(x)
= −(1− F1(x)) < 0,

g1(x) > 0. Similarly, from limx→∞ g2(x) = 0 and g ′2(x) = 2g1(x) >
0, we have g2(x) < 0. Also limx→∞ g3(x) → 0 and g ′3(x) =
f1(x)g2(x) < 0 imply g3(x) > 0. Hence

g ′4(x) = 2F1(x)−
−xf1(x)(1− F1(x))+ f 21 (x)

(1− F1(x))2

> 2F1(x)− 1 > 0.

Since F1(0) = 0.5, we have g4(0) = 0 and g4(x) > 0 for x > 0.
This implies G′1(x) = g4(x)(1− F1(x))/f

2
1 (x) > 0 for x > 0.

(ii) Since Hσ (x) = Gσ (x)/x2 = H1(x/σ), we have minx Hσ (x) =
minx H1(x/σ) = minx H1(x). If x∗1 is the unique point such that
H1(x∗1) = minx H1(x), then x

∗
σ = σ x

∗

1 satisfies

Hσ (x∗σ ) = Hσ (σ x
∗

1) = H1(x
∗

1)

= min
x
H1(x) = min

x
Hσ (x).

Therefore, we need only prove that H ′1(x) = 0 has a unique
solution in (0,∞). Since limx→0+ H1(x) = limx→∞ H1(x) = ∞,
there exists x ∈ (0,∞) such that H ′1(x) = 0 by continuity. h(x)
and H ′1(x) are related by

h(x) = H ′1(x)f
4
1 (x)x

3/(2F1(x)− 1)(1− F1(x))

which implies that H ′1(x) = 0 if and only if h(x) = 0 for x > 0.
Denote

h1(x) = 2F1(x)− 1− 2xf1(x),

h2(x) =
(
x−

1
x

)
2F1(x)
2F1(x)− 1

,

h3(x) =
f1(x)

1− F1(x)
.

Then, h(x) = h2(x)−h3(x). Since h1(0) = 0 and h′1(x) = 2x
2f1(x) >

0, h1(x) > 0. Furthermore,

h′2(x) = 1+
1
x2
+

1+ 1
x2

2F1(x)− 1
−
2f1(x)(x− 1

x )

(2F1(x)− 1)2

> 1+ h1(x)(2F1(x)− 1)2 > 1,

and

h′3(x) =
−xf1(x)(1− F1(x))+ f 21 (x)

(1− F1(x))2
< 1

by g3(x) > 0. Therefore, h′(x) = h′2(x)− h
′

3(x) > 0. This, together
with h(x∗1) = H

′

1(x
∗

1) = 0, implies that h(x) = 0 has a unique
solution at x∗1 . Hence, x

∗

1 is the unique solution for H
′

1(x) = 0 in
(0,∞). �

Theorem 9. Let Ω0 = {θ = [a1, . . . , an]T : aj ∈ [a, a], j =
1, . . . , n}. Suppose that d(k) is Gaussian distributed with mean 0 and
variance σ 2. Then,
(i) For given u0 and C,

η̃(C, u0) =
{
Gσ (C − au0)/u20, if C < (a+ a)u0/2;
Gσ (C − au0)/u20, if C ≥ (a+ a)u0/2.

(33)

(ii) For a given u0 > 0, η̃(C, u0) is minimized by C = (a+ a)u0/2.
(iii)

η̃∗ = Gσ (au∗ − au∗)/u2∗, (34)
where u∗ = 2σ x∗1/(a − a), x

∗

1 is the unique solution of (32)
and C∗ = (a + a)u∗/2 is optimal in the worst-case sense over
θ ∈ Ω0.

Proof. (i) Since aj < a for j = 1, . . . , n and u0 > 0, C−aju0 > C−
au0. If C−au0 > 0, sinceG′σ (x) > 0, x > 0, we haveGσ (C−aju0) >
Gσ (C − au0). If C − aju0 < 0, since G′σ (x) < 0, x < 0, we have
Gσ (C−aju0) < Gσ (C−au0). Otherwise, C−aju0 > 0 > C−au0. In
the last case, if au0−C < C−aju0, thenGσ (C−au0) < Gσ (C−aju0);
and otherwise Gσ (C − au0) > Gσ (C − aju0). These cases can be
summarized to obtain

max{Gσ (C − au0),Gσ (C − aju0)}

=

{
Gσ (C − au0), if C < (a+ aj)u0/2;
Gσ (C − aju0), if C ≥ (a+ aj)u0/2

for all j = 1, . . . , n, which implies (33) after division by u20.
(ii) In the case of C < (a + aj)u0/2, we have C − au0 < 0.

Since G′σ (x) < 0 for x < 0, Gσ (C − au0) is minimized when
2C − (a+ a)u0 = 0. In other words,

inf
C<(a+a)u0/2

η̃(C, u0) = η̃((a+ a)u0/2, u0).

The case for C ≥ (a+ a)u0/2 can be proved similarly.
(iii) By (ii), we have

η∗ = inf
u0>0

Gσ ((a− a)u0/2)/u20

=

(
a− a
2

)2
inf
u0
Hσ

(
a− a
2
u0

)
which is minimized at u0 = u∗. �

For example, suppose that n = 1 and the disturbance of d(k)
is Gaussian distributed with zero mean and variance σ 2 = 625.
Now, suppose that a ∈ Ω = [10, 15]. Then, for given C and u0, we
calculate
η̃(C, u0) = max

a∈[10,15]
G(C − au0)/u20.

For different u0, η̃(C, u0) are plotted in the top plot of Fig. 1. By
Theorem 9, for each given u0, the optimal C is (a + a)u0/2. The
plot with optimal C is shown in the bottom of Fig. 1. It is shown
that approximately optimal input and threshold are u∗ = 19.7 and
C = 118, respectively.
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Fig. 1. Optimal worst-case threshold selection and input design for a ∈ [10, 15]
with a Gaussian distributed disturbance of zero mean and variance 625.

5.3. Remarks on adaptive design

In the special case of Theorem 7, when the range of uncertainty
a− a is large such that

(a− a)u0 > 2δ

there exists no robustly feasible threshold. In other words, for
any threshold C ∈ R, there exists θ ∈ Ω for which C is not a
feasible threshold. In this case, the threshold C must be adaptively
selected when more information on θ can be extracted from
output observations. More generally, adaptive threshold selection
is useful evenwhen a robustly feasible threshold canbe found since
it can potentially further reduce the errors in Theorem 7.
Consider again Example 2. Fig. 2 demonstrates an example of

Gaussian distributed noise and the benefit of using the optimal
threshold on enhancing convergence speed. The top plot indicates
the estimate trajectory when a non-optimal threshold C = 50 is
used. The bottom plot shows the estimates when the threshold is
optimally selected with C = 100. A better convergence speed can
be expected when the optimal threshold is used.
Conceptually, when C is not feasible, either s(k) ≡ 0 with

probability 1, indicating that C is too small, or s(k) ≡ 1 with
probability 1, indicating that C is too big. On the other hand, when
C is feasible and θ is known, Theorem 9 confirms that the optimal
threshold is C = (a+ a)u0/2 for each given u0.
When θ is unknown, since x∗1 in (32) can be calculated off-line,

a potential adaptive threshold selection algorithm is simply

C(N) = (a(N)+ a(N))u0/2 (35)

on the basis of estimated parameter values. There are several
potential approaches of adaptation.
The simplest method is a one-step adaptation method:

(1) Select an initial threshold C and utilize the initial data set
of length N0 to obtain a parameter estimate θ̂ . (2) The new
θ̂ is then used to update the threshold C to its new value
Ĉ . (3) The remaining data are then used to identify θ with
potentially improved identification speed. The main advantage of
this approach is its simplicity. Convergence analysis of the early

Fig. 2. Comparison of identification accuracy under non-optimal and optimal
thresholds: top plot: estimates when a non-optimal threshold (C = 50) is used.
Bottom plot: estimates when an optimal threshold (C = 100) is used.

sections remains intact. The loss of data (N0 points) is compensated
by enhanced speed. Selection of N0 can be analyzed by comparing
the benefits of speed improvement and penalty of data loss.
More generally, one may adapt C persistently. While concep-

tually this approach can potentially improve convergence speed,
it introduces further complications in algorithm development and
convergence analysis. There are two intervening dynamic pro-
cesses, one for C adaptation and the other for θ estimation.
Convergence analysis of such adaptation schemes is an open and
challenging problem. Development of such algorithms is beyond
the scope of this paper, and hence is not pursued further.

6. Quantized sensors and optimal resource allocation

Bandwidth resources that limit data-flow rates will be denoted
by R in bps. R is related to space and time complexities by R =
N log(m+ 1). Suppose that the prior uncertainty set on θ isΩ .

6.1. Optimal resource allocation problems

To understand the impact of increasingm, we revisit

Σ0(m, θ) = NΣCR(m, θ);
%(m, θ) = max

‖x‖=1
‖Σ0(m, θ)x‖

in (22). The following two optimal resource allocation problems,
being natural dual to each other, are introduced, whereZ+ denotes
the set of positive integers.

1. Optimal uncertainty reduction: This aims at reducing
%(N,m, θ) for a given resource R.

ε(R) = min
m∈Z+

max
θ∈Ω

%(m, θ)/N,

subject to N log(m+ 1) ≤ R. (36)

2. Optimal resource allocation: This aims at reducing R for a
given error tolerance level ε, i.e., %(m, θ)/N ≤ ε.

R(ε) = min
m,N∈Z+

N log(m+ 1),

subject to max
θ∈Ω

%(m, θ)/N ≤ ε. (37)
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Wewill consider two scenarios of increasing space complexity.
(1) Structured thresholds: The sets of thresholds are confined to
a pre-specified class that satisfies the following condition. For
m1 < m2, the corresponding threshold sets Sm1 and Sm2 satisfy
the ordered refinement condition: Sm1 ⊂ Sm2 . For instance, in
the typical situation of quantization, one may start with a level of
quantization. Then space complexity is increased by sub-dividing
each subset [Cj, Cj+1) by 2 (an increase of space complexity by
1 bit). (2) Unstructured thresholds: For a given m, the threshold
values in Sm = {C1, . . . , Cm} can be arbitrarily selected. This
is the case, for example, when the selection of the thresholds is
considered part of coding for communications. In this case, the
thresholds can be designed to minimize communication resource
utility.
To indicate the dependence on the threshold values, rather than

only the number of thresholds, we will use the notation

%(Sm, θ) = %(m, θ)

in the following subsections.

6.2. Resource allocation with structured thresholds

In this scenario, for all m the threshold sets Sm are fixed and
satisfy the monotone refinement structure Sm1 ⊂ Sm2 whenever
m1 < m2. We have the following monotonicity in terms of space
complexity.

Corollary 2. Under the conditions of Theorem 5,

%(Sm2 , θ) ≤ %(Sm1 , θ).

For a given resource R = N log(m + 1), N = R/ log(m + 1). As
a result, asymptotically

%(Sm, θ)

N
=
log(m+ 1)%(Sm, θ)

R
.

An optimal resource allocation for the given R is

ε1(R) =
min

1≤m≤2R−1
log(m+ 1)%(Sm, θ)

R
. (38)

Example 3. Consider the system y(k) = θ+d(k). Suppose that the
disturbance is Gaussian distributed with zero mean and variance
200. Hence, the probability density function is

f (x) =
e−

x2
400

√
400π

.

The actual value of θ is 55. Thresholds are structured as follows. The
interval of thresholds is [−10, 70]. Initially, one sensor threshold
is placed at C = 30 (the middle point of the interval) with space
complexity log(m + 1) = log 2 = 1 bit. To increase space
complexity, the number m of thresholds is gradually increased by
dividing equally the interval [−10, 70]. Fig. 3 shows %(Sm, θ) and
log(m+1)%(Sm, θ) as functions of the space complexitym. For this
example, the optimal space complexity ism = 3 thresholds.

The space complexity depends on the actual values of θ and
threshold choices. Its dependence on θ is illustrated in Fig. 4
in which the space complexities for three different θ values are
plotted.
Furthermore, the space complexity varies significantly with

placement of the thresholds. Fig. 5 shows the space complexity
when the range of thresholds is changed from [−10, 70] to
[−10, 60]. The optimal number of thresholds becomesm = 2.

Fig. 3. Space complexity: %(Sm, θ) vs. log(m + 1) (top plot); log(m + 1)%(Sm, θ)
vs. log(m+ 1) (bottom plot).

Fig. 4. Different space complexity curves: θ = 50, 55, 60.

Fig. 5. Space complexity curve varies with thresholds: θ = 55.
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Fig. 6. Comparison of space complexity: (i) Left plots: structured thresholds; (ii) Right plots: optimized thresholds. θ = 55.

6.3. Resource allocation with unstructured thresholds

When the thresholds are design variables, the space complexity
is defined as follows. Let

Sm = {Sm = {C1, . . . , Cm} : ymin < C1 ≤ C2 ≤ · · ·
≤ Cm < ymax, j = 1, . . . ,m}. (39)

This is the set of all possiblem thresholds. Noticing that in (39), we
allow thresholds to be repeated. Consequently, for any Sm ∈ Sm,
there exists (infinitely many) Sm+1 ∈ Sm+1 such that Sm+1 is a
refinement of Sm.

Definition 3. %m(θ) = infSm∈Sm %(Sm, θ).

By Theorem 5, we have the following monotonicity in terms of
space complexity.

Corollary 3. If m1 < m2, then

%m2(θ) ≤ %m1(θ).

Proof. For any Sm1 ∈ Sm1 , there exists an Sm2 ∈ Sm2 such that Sm2
is a refinement of Sm1 . By Theorem 5, we have

%(Sm2 , θ) ≤ %(Sm1 , θ).

Consequently,

%m2(θ) = inf
Sm2∈Sm2

%(Sm2 , θ)

≤ inf
Sm1∈Sm1

%(Sm1 , θ) = %m1(θ). �

For a given resource R = N log(m+ 1), we have N = R/ log(m
+ 1). As a result, asymptotically

σ 2CR(N,m, θ) =
%m(θ)

N
=
log(m+ 1)%m(θ)

R
.

An optimal resource allocation for the given R is

ε2(R) =
min

1≤m≤2R−1
log(m+ 1)%m(θ)

R
. (40)

Example 4. Consider the same system setting as in Example 3.
Suppose that the disturbance is Gaussian distributed with zero
mean andvariance 150. The true value of θ = 55. Two scenarios are
compared: (1) Thresholds are structured. The interval of thresholds
is [−20, 60]. Initially, one sensor threshold is placed at C = 20,
with space complexity log(m + 1) = log 2 = 1 bit. To increase
space complexity, the number of thresholds is increased, each
time the range is divided equally. (2) Thresholds are optimized
for maximum reduction of variances. Fig. 6 demonstrates the
benefit of choosing optimal thresholds for complexity reduction.
The plots show that (1) Optimization of thresholds can greatly
reduce identification errors; (2) Optimal space complexity can
be greatly reduced. For the structured thresholds, the optimal
space complexity is m = 6 thresholds. For optimized threshold
selection, it becomes 1 bit, i.e., a binary sensor is the optimal
choice in terms of space complexity. The plots show that also the
optimized thresholds reduce variance significantly (663 vs. 236 at
the respective optimal space complexities).

6.4. Discussions on space and time complexity

The above examples highlight a number of interesting facts
about space and time complexities.

(1) It is observed that initial increase of space complexity induces
a sharp drop in variance. However, variances soon reach a
near-constant level that does not reduce significantly with
increased space complexity. The optimal space complexities
in these examples are surprisingly low, m = 3 in structured
thresholds and m = 1 in unstructured thresholds. It implies
that when observations are corrupted by random noises, much
more resources should be devoted to heightening data size,
rather than data precision.

(2) A simple calculation shows that resource allocation is a signif-
icant issue in identification problems. A common quantization
scheme in data processing will carry B bits precision. Take an
example of B = 10, namely m = 210 − 1 = 1023 thresh-
olds. From Fig. 3, %(S1023, θ) approaches a constant about 200
for large m values. To reduce the variance to, say, 0.1, the ob-
servation length N must be larger than N ≥ 200/0.1 = 2000.
Together, this amounts to R0 ≥ NB = 20 K bits resource. For
a rational system containing 20 parameters, the total resource
will be R = 20R0 = 400 K bits. Optimal resource allocations
discussed in this paper indicate that this resource request can
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be greatly reduced if one chooses wisely space complexity. For
this example, from Fig. 3 onemay choosem = 3 as the optimal
space complexity. To achieve the same variance of 0.1, we only
need R0 = 600/0.1 = 6 K bits resource, a large reduction from
20 K bits.

(3) Space complexity depends on the actual parameters. However,
from Fig. 4 it seems that optimal space complexity is always
low.

7. Conclusions

Tradeoff between space complexity (measurement precision)
and time complexity (observation length) is of fundamental
importance in system modeling, identification, and information
processing when information processing speed and data-flow
rates are limited. The issue is inherent in all problems involving
signal digitization (sampling and quantization), but most relevant
in systems involving communications, wireless connections, or
computer networks. This paper introduces a basic framework and
certain essential tools for analyzing space and time complexities,
delineating the tradeoff in terms of identification accuracy, and
optimizing resource utility.
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